Syntactic-semantic analysis for information extraction in biomedicine

Sérgio Matos1, Anabela Barreiro2
1IEETA, Universidade de Aveiro
2Centro de Linguística, Universidade do Porto

aleixomatos@ua.pt; barreiro_anabela@hotmail.com

June 2009
Outline

• Background
• Text Mining and Information Extraction in Biomedicine
• Objectives
• Implementation
• Results
• Conclusions
Background

- Genomics and Proteomics are fast-growing fields
- Literature grows exponentially
 - MEDLINE/PubMed ~ 18m citations

- Researchers need to contextualize their theories and findings
 - Interactions between genes/proteins
 - Involvement in biological processes and in disease
 - And many other factors...

- How to keep up-to-date with new knowledge in the field?
Background

• Manually curated biomedical databases are a good source of information
 – Publications are reviewed and important information added to DBs (e.g. protein interactions)
 – Impossible to keep DBs up-to-date due to increased volume of publications

• Text Mining can be useful for
 – Information retrieval (IR)
 – Information extraction (IE)
 – DB curators and end-users (researchers)
Text Mining and Information Extraction in Biomedicine

• Text mining deals with the automated processing of texts to derive high quality information
• Information Extraction can be seen as one application of TM

• Different processing levels
 • Entity Recognition (ER) genes, proteins, etc.
 • Normalization ATF2 - GeneID 1386
 ATF-2 – Uniprot P15336
 • Relation extraction PPI, gene/disease
 • Event extraction gene expression, regulation

+ semantics + domain knowledge
Text Mining and Information Extraction in Biomedicine

• Good results for NER, but limited to a few entity types
 – 80%-90% for recognition of genes/proteins
 – Need to include more entities, like chemical compounds, diseases, experimental conditions

• Relation extraction has focused mostly on PPI

• Inter-concept relations not too explored
 – e.g. gene/disease, drug/target
 – mostly based on co-occurrence statistics
Text Mining and Information Extraction in Biomedicine

- Recent interest towards extraction of events
 - BioNLP shared task and BioCreaTive II.5

- ... and other entities / facts
 - e.g. Experimental conditions, lab techniques, measurements

- ... Discourse analysis
 - “indicating/suggesting that…”, “in contrast…”

- Full-text vs. Abstracts
 - Complexity in grammar
Linguistic Resources for Biomedical TM

• UMLS Metathesaurus
 – various terms, all linked to same concept (e.g. ‘Hypertension’)
 – semantic information provided by the UMLS Semantic Network

• BioLexicon
 – Includes domain relevant verbs (localize, bind, express, ...)

• Lexical resources can be created from available online DBs
 – NCBI Entrez Gene for gene names
 – UniProt for proteins
 – OMIM for diseases
 – Various ontologies
Objectives

• Extract phrases indicating a biomolecular event from scientific text

• Biomolecular events include various types
 – Examples
 • “phosphorylation of TRAF2”
 • “localization of beta-catenin”
 • “TRADD interacts with TES2”

• BioNLP'09 Shared Task on Event Extraction
 – http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/
Objectives

• Six event types considered
 – Localization, Binding, Gene expression, Transcription, Protein Catabolism, Phosphorylation

• Training data
 – Annotation of genes/proteins occurring in each input text, including the text section (start and end characters)
 – Annotation of the events, including the event type, the participating entities and the corresponding trigger word (with start and end times)

• Test data
 – Annotation of participating genes/proteins is given
 – Create annotation of events for the given entities
Implementation

• General approach
 – Create syntactic grammars to detect phrases that indicate events
 – Grammars are based only on NEs and domain verbs (and derived names)

• Requisites
 – Grammars outputs should indicate the event type

• Solution
 – Event types can be associated with the trigger word using the semantic properties in NooJ dictionaries
 – Event types associated with each trigger word are derived from training data
Implementation

• Resources
 – Entity dictionary
 • Create dictionary with list of entities occurring in the texts
Implementation

<table>
<thead>
<tr>
<th>Lemma</th>
<th>PoS</th>
<th>FLX</th>
<th>Semantic properties</th>
<th>ID</th>
<th>TAXID</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td>N</td>
<td>TABLE</td>
<td>ORGANISM</td>
<td>9606</td>
<td></td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>N</td>
<td></td>
<td>ORGANISM</td>
<td>9606</td>
<td></td>
</tr>
<tr>
<td>Mus musculus</td>
<td>N</td>
<td></td>
<td>ORGANISM</td>
<td>10090</td>
<td></td>
</tr>
<tr>
<td>Breast cancer type 1 susceptibility protein</td>
<td>N</td>
<td></td>
<td>PROTEIN</td>
<td>P3839 8</td>
<td>9606</td>
</tr>
<tr>
<td>BRCA1</td>
<td>N</td>
<td></td>
<td>PROTEIN</td>
<td>P3839 8</td>
<td>9606</td>
</tr>
<tr>
<td>BRCA1</td>
<td>N</td>
<td></td>
<td>PROTEIN</td>
<td>P4875 4</td>
<td>10090</td>
</tr>
<tr>
<td>BRCA1</td>
<td>N</td>
<td></td>
<td>GENE</td>
<td>672</td>
<td>9606</td>
</tr>
<tr>
<td>RNFL53</td>
<td>N</td>
<td></td>
<td>GENE</td>
<td>672</td>
<td>9606</td>
</tr>
</tbody>
</table>
Implementation

• Resources
 – Entity dictionary
 • Create dictionary with list of entities occurring in the texts
 – BioLexicon verb dictionary
 • Adapted to include event type
 – From the training data, extract the verbs associated with events
 – Add a semantic property to the dictionary entry indicating the event type
 – Example: “express,V+EventType=Gene_Expression”
 • Added inflectional and derivation rules
 – The inflected and derivated forms inherit the verb’s semantic properties
Implementation

• Verb dictionary

<table>
<thead>
<tr>
<th>Lemma</th>
<th>PoS</th>
<th>DRV</th>
<th>FLX</th>
<th>EventType</th>
</tr>
</thead>
<tbody>
<tr>
<td>express</td>
<td>V</td>
<td>ION:TABLE</td>
<td>ABOLISH</td>
<td>Gene_expression</td>
</tr>
<tr>
<td>ligate</td>
<td>V</td>
<td>TION:TABLE</td>
<td>SMILE</td>
<td>Binding</td>
</tr>
<tr>
<td>stimulate</td>
<td>V</td>
<td>TION:TABLE</td>
<td>SMILE</td>
<td>Positive_regulation</td>
</tr>
</tbody>
</table>
Implementation

• Syntactic grammars
 – Sentences from training set used to generate surface patterns
 – Manual procedure
 – Seven grammars created
 – Example:

 “stimulation of human CD4”
Implementation

Stimulation of human CD4

\(<\text{EVENT}+\text{PROTEIN}=$CD4$+\text{EXP}=\text{Stimulation}+\text{TYPE}=\text{Positive_regulation}>\)
Results

- Example patterns extracted from texts

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Concordance in text</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><entity> [<entity_type>] <nominalization></code></td>
<td>HSP gene expression</td>
</tr>
<tr>
<td><code><nominalization> “of” [<entity_type>] <entity></code></td>
<td>upregulation of Fas</td>
</tr>
<tr>
<td><code><entity> [<entity_type>] <be> [“not”] [<adverb>] <verb></code></td>
<td>IL-2R stimulation was totally inhibited</td>
</tr>
<tr>
<td><code><verb> <preposition> <entity></code></td>
<td>binding of TRAF2</td>
</tr>
<tr>
<td><code><verb> <nominalization> “of” <entity></code></td>
<td>suppressing activation of STAT6</td>
</tr>
</tbody>
</table>
Results

- Average results

<table>
<thead>
<tr>
<th>Event type</th>
<th>Recall</th>
<th>Precision</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localization</td>
<td>35.63</td>
<td>70.45</td>
<td>47.33</td>
</tr>
<tr>
<td>Binding</td>
<td>13.54</td>
<td>34.06</td>
<td>19.38</td>
</tr>
<tr>
<td>Gene Expression</td>
<td>46.40</td>
<td>78.45</td>
<td>58.31</td>
</tr>
<tr>
<td>Transcription</td>
<td>33.58</td>
<td>41.07</td>
<td>36.95</td>
</tr>
<tr>
<td>Protein Catabolism</td>
<td>35.71</td>
<td>62.50</td>
<td>45.45</td>
</tr>
<tr>
<td>Phosphorylation</td>
<td>49.63</td>
<td>79.76</td>
<td>61.19</td>
</tr>
<tr>
<td>Average</td>
<td>36.76</td>
<td>65.58</td>
<td>47.11</td>
</tr>
</tbody>
</table>
Conclusions

• NooJ syntactic grammars for IE
 – Simple and flexible approach
 – Takes advantage of semantic properties and inflectional and derivational morphology in NooJ dictionaries

• Pattern identification
 – Manual method is limited
 – How to generate new patterns automatically?

• Gene regulatory events
 – Described by complex constructions
 – Can syntactic grammars be used for this type of events?
References and Acknowledgments

• BioLexicon was developed within the BOOTStrep project
 – http://www.nactem.ac.uk/biolexicon/
 – http://www.bootstrep.eu/bin/view/Extern/WebHome

• Data set from the BioNLP’09 Shared Task on Event Extraction
 – http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/

Sérgio Matos is funded by Fundação para a Ciência e Tecnologia (FCT)
under the Ciência2007 programme.